

Math 2210, Spring 2022

Homework 3

Due by 10 pm Sep 14

1. (10 points) Find a matrix M that induces the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+y \\
y
\end{array}\right]
$$

for all x, y. Is T a rotation (what axis and angle?), a reflection (through what?), a combination of these, or not a combination of these? Justify your answer.
2. $(5+\mathbf{5}=\mathbf{1 0}$ points $)$ Let

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

(a) Calculate A^{2}.

In the following diagram, known as a directed graph, there is an arrow (called a directed edge) from vertex v_{j} to vertex v_{i} whenever the (i, j)-entry in A is 1 . That is to say, A is the adjacency matrix for the directed graph. Another example is presented in the final part of Section 2.3 of Nicholson.

There are two paths of length 2 in our directed graph from v_{2} to v_{4}, namely $v_{2} \rightarrow v_{3} \rightarrow v_{4}$ and $v_{2} \rightarrow v_{1} \rightarrow v_{4}$. Correspondingly, the (4,2)-entry in A^{2} is 2 .
(b) Explain why this correspondence works for all adjacency matrices. That is, explain why the (i, j) entry of the square of an adjacency matrix A for a directed graph with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is the number of paths of length 2 from v_{j} to v_{i}.
3. (10 points) Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

be a 2×2 matrix, where a, b, c, d are real numbers. Show, using row reduction, that if $a d-b c \neq 0$, then A is invertible.

